The Fourier Transform
of the
Quadratic
Kubo-Bass Term
Robert Kessel
Code 8123
Naval Research Laboratory
January 18, 2003
Abstract
This calculation yields a relatively simple form for the
Fourier transform of the quadratic, or
2nd order, Kubo-Bass term.
Key words: Fourier transform, quadratic Kubo-Bass
term, 2nd order Kubo-Bass term
The Fourier transform of the quadratic
Kubo-Bass term
The behavior given by the first two terms of the Kubo-Bass series is
B(t) =
|
∫
|
R(t') G1(t-t') dt' +
|
∫
∫
|
R(t') R(t'') G2(t-t', t'-t'') dt' dt''
.
|
|
(1) |
While the Fourier transform of the linear term is well known,
r(f)g1(f), the quadratic term has rarely been
used. In the frequency domain the 2nd
order term is given by
b2(f) =
|
∫
|
e2πi ft dt
|
∫
∫
|
R(t') R(t'') G2(t-t', t'-t'') dt' dt''
.
|
|
(2) |
Replacement of R(t') and R(t'') by their inverse Fourier
transform
representation[1]
yields
|
|
|
|
|
|
∫
|
e2πi ftdt
|
∫
|
∫
|
|
[
|
∫
|
r(f')
e-2πi f't'
df'
|
]
|
[
|
∫
|
r(f'')
e-2πi f''t''
df''
|
]
|
G2(t-t', t'-t'') dt' dt''
, |
|
(3) |
|
|
∫
|
dt |
∫
|
dt' |
∫
|
dt'' |
∫
|
df' |
∫
|
df''
e2πi (ft - f't' - f''t'')
G2(t - t', t' - t'') r(f') r(f'')
. |
|
(4) |
|
|
|
Set v = t'- t'' or t'' = t'- v and dt' = - dv, so that upon
substitution and rearrangement of the integration order
|
|
|
|
|
- |
∫
|
dt |
∫
|
dt' |
∫
|
df' |
∫
|
df''
e2πi ft
|
[
|
∫
|
dv
e-2πi (f't' + f''(t'- v))
G2(t-t',v)
|
]
|
r(f') r(f'')
, |
|
(5) |
|
|
- |
∫
|
dt |
∫
|
dt' |
∫
|
df' |
∫
|
df''
e2πi ft |
[
|
∫
|
dv
e-2πi (f't' + f''t' - f''v)
G2(t-t',v)
|
]
|
r(f') r(f'')
, |
|
(6) |
|
|
- |
∫
|
dt |
∫
|
dt' |
∫
|
df' |
∫
|
df''
e2πi ft
e-2πi (f' + f'')t'
|
[
|
∫
|
dv
e2πi f''v
G2(t-t',v) |
]
|
r(f') r(f'')
. |
|
(7)
|
|
|
|
Next set u = t - t' or t' = t - u and dt' = - du, hence upon
substitution and further rearrangement
|
|
|
|
|
∫
|
dt |
∫
|
df' |
∫
|
df'' |
∫
|
du
e2πi ft
e-2πi (f'+ f'')(t - u)
|
[
|
∫
|
dv
e2πi f''v
G2(u,v) |
]
|
r(f') r(f'')
, |
|
(8) |
|
|
∫
|
dt |
∫
|
df' |
∫
|
df'' |
∫
|
du
e2πi (ft - f't + f'u - f''t + f''u)
|
[
|
∫
|
dv
e2πi f''v
G2(u,v) |
]
|
r(f') r(f'')
, |
|
(9) |
|
|
∫
|
dt |
∫
|
df' |
∫
|
df'' |
∫
|
du
e2πi (f - f'- f'')t
e2πi (f' +f'')u
|
[
|
∫
|
dv
e2πi f''v
G2(u,v) |
]
|
r(f') r(f'')
, |
|
(10) |
|
|
∫
|
df' |
∫
|
df'' |
∫
|
dt
e2πi (f - f'- f'')t
|
[
|
∫
|
∫
|
du dv
e2πi (f'+f'')u
e2πi f''v
G2(u,v)
|
]
|
r(f') r(f'')
. |
|
(11) |
|
|
|
The factor in the square parentheses is a two-dimensional Fourier
transform, so
Equation 11 can be
rewritten in the simpler form of
b2(f) = |
∫
|
df' |
∫
|
df'' |
|
g2(f'+f'', f'') r(f')r(f'')
. |
|
(12) |
Recognizing the underlined factor in
Equation 12 as
the Fourier transform representation of
((f-f') - f'')
[2] and,
that from symmetry it is also equal to
(f'' - (f-f')), yields upon substitution
and evaluation of the integral over df''
|
|
b2(f) = |
∫
|
df' |
∫
|
df''
(f'' - (f-f'))
g2(f' + f'', f'') r(f') r(f'')
, |
|
(13) |
|
|
|
∫
|
df' g2(f' + (f-f'), f-f') r(f') r(f-f')
, |
|
(14) |
|
|
|
∫
|
df' g2(f, f-f') r(f') r(f-f')
. |
|
(15) |
|
|
|
All that remains are the two small tasks of developing a stable
numerical technique to estimate
g2(f, f-f') from data and an
experimental test of whether
Equation 15 can outperform
linear term.
References
- [1]
-
Ron Bass both showed the value
of replacing R(t') and
R(t'') by their inverse Fourier
transform representation and developed the general outline
of this calculation in the early 1980's. This calculation is just a
recovery of his original result.
- [2]
-
Arfken, G. (1970). Mathematical Methods for
Physicists, (pp. 671-673). New York:Academic Press.
File translated from
LATEX
by
TTH, version 2.21.
On 16 Jan 2003, 09:49.
(with later hand modifications of the equations and such)
The calculation given on this web-page is also available in Adobe
Acrobat format at
2nd_order_freq.pdf. Note
the .pdf will render a bit fuzzy on most browsers, but when
printed, a hard copy will have full and sharp resolution.
The LATEX source file used as the
basis of the both the .html and .pdf versions of this
calculation is available at
2nd_order_freq.tex.