The Fourier transform of the quadratic Kubo-Bass term

The behavior given by the first two terms of the Kubo-Bass series is
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While the Fourier transform of the linear term is well known, r(f)g:(f), the quadratic term

has rarely been used. In the frequency domain the 224 order term is given by
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Replacement of R(#') and R(t") by their inverse Fourier transform representation[1] yields
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Set v =t —t"or t" =t — v and dt" = —dv, so that upon substitution and rearrangement

of the integration order
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Next set u = ¢t —t' or t/ = ¢t — u and dt’ = —du, hence upon substitution and further
rearrangement
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The factor in the square parentheses is a two-dimensional Fourier transform, so Equation 11



can be rewritten in the simpler form of
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Recognizing the bracketed factor in Equation 12 as the Fourier transform representation of
S((f—=f)— fM]2] and, that from symmetry it is also equal to 6(f" — (f — f’)), yields upon
substitution and evaluation of the integral over df”
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All that remains are the two small tasks of developing a stable numerical technique to esti-
mate gz (f, f— f') from data and an experimental test of whether Equation 15 can outperform
linear term.
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